Mean-field theory of superradiant phase transition in complex networks

نویسندگان

چکیده

In this work we consider a superradiant phase transition problem for the Dicke-Ising model, which generalizes Dicke and Ising models annealed complex networks presuming spin-spin interaction. The model accounts interaction between spin (two-level) system external classical (magnetic) quantized (transverse) fields. We examine regular, random, scale-free network structures characterized by delta-function, random (Poisson), power-law exponent degree distributions, respectively. To describe paramagnetic (PM) - ferromagnetic (FM) (SR) transitions introduce two order parameters: total weighted z-component normalized transverse field amplitude, correspond to spontaneous magnetization in z x directions, Due interplay finite size effects first elucidate novel features of SR state presence PM-FM transition. reveal that critical temperature grows monotonically from some certain value corresponds number nodes. For find rises with increase accompanied both establishing quantum vanishing collective component direction. addition, establish conditions parameters obtain when approaches zero. fundamental features, involve values parameters, are discussed occurrence superradiance limit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mean Field Theory of the Chiral Phase Transition

The recent discussions by Kocić and Kogut on the nature of the chiral phase transition are reviewed. The mean-field nature of the transition suggested by these authors is supported in random matrix theory by Verbaarschot and Jackson which reproduces many aspects of QCD lattice simulations. In this paper, we point out physical arguments that favor a mean-field transition, not only for zero densi...

متن کامل

Mean field theory of assortative networks of phase oscillators

Employing the Kuramoto model as an illustrative example, we show how the use of the mean field approximation can be applied to large networks of phase oscillators with assortativity. We then use the ansatz of Ott and Antonsen [Chaos 19, 037113 (2008)] to reduce the mean field kinetic equations to a system of ordinary differential equations. The resulting formulation is illustrated by applicatio...

متن کامل

Depolarization shift of the superradiant phase transition

Quantum electrodynamics, when applied to a large ensemble of identical atoms, leads to the surprising prediction that a so-called superradiant phase transition takes place above a critical density of the atom gas. In thermal equilibrium and also in the ground state of the system at zero temperature, the atoms in the superradiant phase develop a polarization field with non-vanishing mean value a...

متن کامل

Mean Field Theory for Sigmoid Belief Networks Mean Field Theory for Sigmoid Belief Networks

We develop a mean eld theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean eld theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition|the classiication of ha...

متن کامل

Mean-field theory of fluid neural networks

Jordi Delgado and Ricard V. Solé Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Campus Nord, Mòdul C6, Jordi Girona Salgado 1-3 08034 Barcelona, Spain Complex Systems Research Group, Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Sor Eulàlia d’ Anzizu s/n, Campus Nord, Mòdul B4, 08034 Barcelona, Spain ~Received 27 May ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreve.103.062309